ᄃபSHIロNING RING

DEGCRIPTIロN

Cushioning seal for pneumatic cylinders

MATERIAL

Type：	Polyurethane
Designation：	SEALPUR 93
Hardness：	93° ShA

MAIN FEATURES

The ring type AMM was designed specifically for pneumatic cushioning where high pressure peaks occur．A lip sealing with a chamfer on the inside assures an effective cushioning．
At the change of direction，the integrated check valve function ensures that the pressure can be applied on the full piston surface．
The material used to produce this seal is a polyurethane compound， specifically developed for the production of pneumatic seals，that ensures excellent properties on wear－resistance，extended service life and low permanent deformation．
－Extended service life
－Easy installation
－Simple groove design
－Excellent wear－resistance
－Easy installation without expensive auxiliaries

FIELD ロF APPLICATIロN

Pressure	$\leq 20 \mathrm{bar}$
Speed	$\leq 1 \mathrm{~m} / \mathrm{s}$
Temperature	$-35^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$
Fluids	Air with or without lubrication，grease，mineral oils， non－aggressive gases，etc．

SURFACE RロUGHNESS

Dynamic surface	$\mathrm{Ra} \leq 0.25 \mu \mathrm{~m}$	$\mathrm{Rt} \leq 2.5 \mu \mathrm{~m}$
Static surface	$\mathrm{Ra} \leq 0.8 \mu \mathrm{~m}$	$\mathrm{Rt} \leq 6.3 \mu \mathrm{~m}$

LEAD－IN CHAMFERS	d	$\mathbf{S}_{\text {min }}$	Angle
	•less 20	3 mm	$15^{\circ} \div 20^{\circ}$
	$20 \div 50$	4 mm	$15^{\circ} \div 20^{\circ}$
$51 \div 150$	5 mm	$15^{\circ} \div 20^{\circ}$	
	\cdot over 150	6 mm	$15^{\circ} \div 20^{\circ}$

－to avoid damaging the sealing lips during installation，housing must have rounded chamfers．Sharp edges and burrs within the installation area of the seal must be removed

| Part． | $\mathbf{d}^{\text {h10 }}$ | $\mathbf{D}^{\mathrm{H} 11}$ | $\mathbf{M}^{\mathrm{H} 11}$ | $\mathbf{R}^{\mathrm{H} 11}$ | $\mathbf{L}^{ \pm 0.1}$ | $\mathbf{A}^{+0.2}$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| AMM 9．5 15 | 9.5 | 15 | 10 | 12 | 4.5 | 2 |
| AMM 12 18 | 12 | 18 | 13 | 15.5 | 4.8 | 2 |
| AMM 12 20 | 12 | 20 | 13 | 17 | 7 | 2 |
| AMM 14 20 | 14 | 20 | 15 | 17.5 | 7 | 2 |
| AMM 14 22 | 14 | 22 | 15 | 19 | 7 | 2 |
| AMM 16 24 | 16 | 24 | 17 | 21 | 7 | 2 |
| AMM 20 28 | 20 | 28 | 21 | 24 | 7 | 2 |
| AMM 22 30 | 22 | 30 | 23 | 26 | 7 | 2 |
| AMM 25 33 | 25 | 33 | 26 | 29 | 7 | 2 |
| AMM 28 36 | 28 | 36 | 29 | 32 | 7 | 2 |

Part.	$\mathbf{d}^{\text {h10 }}$	$\mathbf{D}^{\text {H11 }}$	$\mathbf{M}^{\text {H11 }}$	$\mathbf{R}^{\text {H11 }}$	$\mathbf{L}^{ \pm 0.1}$	$\mathbf{A}^{+0.2}$
AMM 3040	30	40	31.5	35	7	2
AMM 32 42	32	42	33.5	37	7	2
AMM 36 46	36	46	37.5	41	7	2
AMM 40 50	40	50	41.5	45	7	2
AMM 50 60	50	60	51.5	55	7	2

